Adding a Result Variable
To add a result variable, space must be allocated for it in the CResultType-derived object, it must be registered, and the simulation must assign a value to the variable for each person for whom the result value is coded.
Allocating Space

To allocate space for the variable, add the variable name to the existing list of result variables in the class derived from CResultType in the header file. As an example, in the header file for the FoodStamps simulation, the CFStampType class includes the following results variables:

class CFStampType : public CResultType {

public:

 float AnnualBenefitsEligibleFor;

 float AnnualBenefitsReceived;

 float BenefitsEligibleFor[12];

 float BenefitsReceived[12];

};

This defines four result variables of type float – two annual (AnnualBenefitsEligibleFor and AnnualBenefitsReceived) and two monthly (BenefitsEligibleFor and BenefitsReceived).
Note that the order of the variables does not matter.

Registering the variable
In addition to providing access to input variables, the CHousehold object provides the means for a simulation to add result variables to the TRIM database. Each simulation that produces result variables must have a class derived from the ResultSet class, and must override the function Register with a version that uses the CHousehold functions RegisterVar_Single and/or RegisiterVar_Int to “register” its result variables. For example, to register a result variable named “AnnualBenefitsEligibleFor”, the following line must appear in the over-ridden Register function:

pHousehold->RegisterVar_Single ("AnnualBenefitsEligibleFor ", Result-> AnnualBenefitsEligibleFor, pHousehold->pExcecutingResultSet->BaseIdx);

The first argument is simply a string giving the name of the result variable, the second argument is the location of the variable, and the third argument is constant. The only difference between the functions RegisterVar_Single and RegisterVar_Int is that the former is used to register “float” variables, and the latter to register “int” variables. To register a monthly result variable, the syntax is similar:

pHousehold->RegisterVar_Single ("BenefitsEligibleFor ", Result-> BenefitsEligibleFor [11], pHousehold->pExcecutingResultSet->BaseIdx, TRUE);

Note, however, that the location passed is the location of the value for the last month (i.e. [11]), and a fourth argument (TRUE) is also passed. The Register function would contain as many of these calls as there are result variables to be registered.

Assigning and accessing values
All result variables are person-level (i.e. there is a separate value for each person in a household). The frame initializes each result variable for each person to zero. If the simulation does not subsequently assign a value to a result variable for a particular person, it will retain its initial value of zero. To assign or access a value of a particular person, first set the “current” person to the desired person using the Get…Person functions of the CHousehold or CUnit class. Then use the following syntax to assign the value to the variable:

Result->variablename = value;

And to access to variable:

X = Result->variablename;
Where “Result” is a pointer to the CResult object (which is a template class defined as the CResultType-derived class for the simulation). For example, in the header file for FoodStamps, each class that needs access to result variables has the “Result” pointer defined as:

CResult <CFStampType> &Result;

For monthly result variables, the syntax specifies the month:

Result->variablename[month]= value;

where “month” is 0-11. Note that neglecting to specify a month will not result in a compilation error alert. For example, a Boolean test on a monthly result variable will return true all the time if the monthly index is not specified (since the value of Result->variablename will be a positive value pointing to variable location.)
CResultType-derived result variables are accessible to all classes in a simulation. This makes them especially useful as a way of making information defined in one class available to all other classes. The fact that they are automatically initialized by the frame also simplifies their use.
